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Abstract

An impact of ideas associated with the concept of a hypothetical
quantum computer upon classical computing is analyzed.

Two fundamental properties of quantum computing: direct
simulations of probabilities, and influence between different
branches of probabilistic scenarios, as well as their classical~
versions, are discussed. It has been demonstrated that classical
probabilities, and in particular, probabilistic Turing machine, canl
be simulated by combining chaos and non-Lipschitz dynamics,
without utilization of any man-made devices. Special attention
was focused upon coupled stochastic processes defined in terms
Df conditional probabilities for which joint distributions do not exist.
The effect of intetierence  of probabilities is imitated by a special
type of coupling between simulated and calculated probabilities. It
is demonstrated that this classical imitation of a quantum effect can
be useful in treatment of non-quantum problems of exponential
complexity which occur in intelligent systems. Based upon this
effect, the concept of quantum intelligence is introduced. New
possible way of simulation of the Schrodinger  equation is
discussed.

jntroduct icm

During the last fifty years, a theory of computations has been based upon

classical physics implemented by the deterministic Turing machine. However,

along with many successes of digital computers, the existence of so called hard

problems put some limitations on their capabilities, since the computational time

for such problems grows exponentially as a function of the dimensionality. It

was well understood that the only way to fight the “curse” of the combinatorial

explosion is to enrich digital computers with analog devices. In
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contradistinction to a digital computer which performs operations on numbers

symbolizing an underlying physical process, an analog computer processes

information by exploiting physical phenomena directly, and thereby, it

significantly reduces the complexity of the computations. This idea was

stressed by R. Feynman (1982) who demonstrated that the problem of

exponential complexity in terms of calculated probabilities can be reduced to a

problem of polynomial complexity in terms of simulated probabilities. However,

the main disadvantage of analog computers is a lack of universality. That is

why the concept of a quantum computer became so attractive: its analog nature

is based upon physical simulations of quantum probabilities, and, at the same

time, it is universal (at least, for modeling physical world).

Although the development of the quantum-mechanical device is still in

progress (C?.A. Turchette,  1995) a new quantum theory of computations has

been founded (D. Deutsch, 1989: P. Shor, 1994). This theory suggests that

there is a second fundamental advantage of the hypothetical quantum computer

which is based upon the wave properties of quantum probabilities: a single

quantum computer can follow many distinct computational paths all at the same

time and produce a final output depending on the interference of all of them.

This particular property opened up a new chain of algorithms which solve in

polynomial time such hard problems as factorization and discrete log i.e., the

problems which are believed to be intractable on any classical computer.

Thus, there are at least two areas where the quantum computer is

expected to be superior over the classical one: quantum mechanics (due to

simulation of quantum probabilities), and some specific combinatorial problems

linked to operation research (due to interference of quantum probabilities).
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However, besides of quantum mechanics, there are other computational

“worlds” (biological, psychological, and social dynamics, informatics,  artificial

intelligence) where quantum mechanical micro structure has not been

observed, Will the quantum computer be superior in these areas too? There

are some doubts about that. Indeed, quantum mechanics is fully reversible,

while the dynamics associated with biology, psychology and other intellectual

activities is fundamentally irreversible: their time evolution describes

transformations to higher levels of complexity. Consequently, quantum

computer can provide only calculations rather than simulations in that areas.

Similar disadvantage may occur even in computations in classical

physics if the models involve transport phenomena (heat transfer, diffusion, etc.)

since then the problems also become irreversible. It should be noticed that

despite the quantum-mechanical micro-structure of the transport phenomena,

the transformation from the fully reversible Hamiltonian  models to their

microscopically irreversible versions is very sophisticated (in particular, it

includes transition through chaotic instability, averaging, etc.). That is why

direct simulations of classical physics by quantum computer is in question. In

addition to that, computations in classical physics are expected to produce

cieterministic answers while quantum computer provides the answers in terms

c)f probabilities. It should be noticed however that the last property of quantum

computer can be useful for classical computing in case of Monte-Carlo

approach if the quantum computer is exploited as a random number generator.

This paper has been motivated by an attempt to incorporate into classical

computing the basic ideas of quantum computing: The simulations of
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probabilities, and the interference between different branches of probabilistic

scenarios.

It has to” be emphasized that dynamical simulations of classical

probabilities conceptually is more difficult than those in quantum mechanics

since classical dynamics is fully deterministic (if initial conditions are known

exactly). The only window from classical dynamics to the probabilistic world is

through chaos where the source of stochasticity  is in finite precision of initial

conditions. As shown in the second section of this paper, the combination of

chaos and non-Lipschitz dynamical systems (M. Zak, 1994, 1996) can generate

finite-state Markov chains. The corresponding stochastic process is described

by two types of equations: the first one implements simulations in the form of

random solutions, while the second (which is of the Fokker-Planck  type)

describes the evolution of the probabilities. Coupling between these two types

of equations implements interference of probabilities similar (but not identical)

to those in quantum mechanics.

The third, fourth and fifth sections describe a mathematical formalism

behind the dynamical simulations of stochastic processes including

probabilistic Turing machine, concept of stochastic attractors, as well as a new

interpretation of simulated conditional probabilities.

The sixth section addresses applications to modeling of

systems.

ntelligent

In the seventh section, the effect of reducing computational complexity in

combinatorial problems due to classical imitations of probability interference is
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discussed. Based upon this effect, the concept of quantum intelligence is

introduced.

The last section

in a pseudo-euclidean

equation.

introduces a hypothetical deterministic dynamical system

space which, in principle, can simulate the Schrddinger

2. of of corKXQ.t. .

Classical dynamics is fully deterministic if initial conditions are known

exactly. Otherwise in some non-linear systems, small initial errors may grow

exponentially so that the system behavior attains stochastic-like features, and

such a behavior is called chaotic. The discovery of chaos contributed in better

understanding of irreversibility in dynamics, of evolution in nature, and in

interpretation and modeling of complex phenomena in physics and biology.

}+owever, there is a class of phenomena which cannot be represented by chaos

directly. This class includes so called discrete events dynamics where

randomness appears as point events, i.e., there is a sequence of random

occurrences at fixed or random times, but there is no additional component of

uncertainty between these times. The simplest example of such a phenomenon

is a heartbeat dynamics which, in the first approximation, can be modeled by a

sequence of pulses of equal heights and durations, but the durations of the

pauses between these pulses are randomly distributed. Most processes of this

type are associated with intellectual activities such as optimal behavior,

decision making process, games, etc. In general, discrete events dynamics is

characterized by a well-defined probabilistic structure of a piecewise-

deterministic Markov chains, and it can be represented by probabilistic Turing

machine. On the contrary, a probabilistic structure of chaos, and even the
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appearance of chaos at all, cannot be predicted based only upon the

underlying model without actual numerical runs. (The last statement can be

linked to the Richardson’s (1968) proof that the theory of elementary functions

in classical analysis is undecidable).

chaos and discrete events dynamics?

based only upon physical laws without

But is there a “missing link” between

And if it is, can this link be simulated

exploiting any man-made devices such

as random number generators? A positive answer to this question would make

a fundamental contribution to the reductionists view on intrinsic unity of science

that all natural phenomena are reducible to physical laws. However, in addition

to this philosophical aspect, there is a computational advantage in exploiting

simulated probabilities instead of calculated ones in the probabilistic Turing

machine: as shown by R. Feynman (1 982), the exponential complexity of

algorithms in terms of calculated probabilities can be reduced to polynomial

complexity in terms of simulated probabilities.

In this section we demonstrate that the missing link between chaos

discrete event process can be represented by non-Lipschitz  dynamics,

1994, 1996.)

In order to illustrate

consider a rectilinear motion

force:

and a

(Zak,

the

of a

basic concepts of non-Lipschitz  dynamics,

particle of unit mass driven by a non-Lipschitz

L = vv’’3sin ox, v = const, [v]=~

;=V

(1)

(2)

where v and x are the particle velocity and position, respectively,

Subject to the zero initial condition
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l)= o at t=O (3)

.

●

equation (1) has a singular solution

V=o

and a regular solution

‘= ’(%”2W

(4)

(5)

These two solutions coexist at t = O, and this is possible because at this

point the Lipschitz condition fails:

the

the

the

the

(5),

d; ~ &2,3 sin W ,.+O-+ *
67) 3

1-)0

:)0 a t  1~#0, t)o

(6)

(7)

singular solution (4) is unstable, and the particle departs from rest following

solution (5). This solution has two (positive and negative) branches [since

power in (5) includes the square root], and each branch can be chosen with

probability p and (1-p) respectively. It should be noticed that as a result of

the motion of the particle can be initiated by infinitesimal disturbances (such

motion never can occur when the Lipschitz condition

initial disturbance cannot become finite in finite time).

holds: an infinitesimal

Strictly speaking, the solution (5) is valid only in the time interval
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.

8

(8)

and at t ~ 2Z / o it coincides with the singular solution (4)

For r ) 2Z / o equation (4) becomes unstable, and the motion repeats

itself to the accuracy of the sign in equation (5).

Hence, the particle velocity v performs oscillations with respect to its

zero value in such a way that the positive and negative branches of the solution

(5) alternate randomly after each period equal to 27c / o.

Turning to equation (2), one obtains the distance between two adjacent

equilibrium position of the particle:

2XILU  4V
312

~(
Xj– Xj_*=fo — sin3

)
dt = 64(3@-”2 V3’2 = *h

3U.2
(9)

Thus, the equilibrium positions of the particle are

x~ = o, x, =fh, X2 =khkh... (lo)

while the positive and negative signs randomly alternate with probabilities p

and (1-p), respectively.

Obviously, the particle performs an unrestricted random walk: after each

time period



(11)

.

it changes its value on ~h [see equation (1 O)].

The probability density f(x,t) is governed by the following difference

equation:

f(x, t + T)= pf(x  - h,t)+(l-p)f(x  + h,t) (12)

which represents a discrete version of the Fokker-Planck  equation,

while

J:’f(x,t)  dx = 1 (13)

Several comments to the model (1) and its solution have to be made.

Firstly, the “viscous” force

F = – ~#3 (14)

includes static friction (see Eq. 6) which actually causes failure of the Lipschitz

condition. These type of forces are well-known in theory of visco-plasticity (H.

Ziegler, 1963). It should be noticed that the power ~/3 can be replaced by any

power of the type:

~_2n–1_— n =1,2,... etc
2n+l’

(15)
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with the same final result (12). In particular, by selecting large n, one can make

k close to 1, so that the force (13) will be almost identical to its classical

counterpart

pc=-vu (16)

everywhere excluding a small neighborhood of the equilibrium point V=o,

while at this point

dF ~w but “
,

dv ‘
~ -+0  at
av

V+o (17)

Secondly, without the failure of the Lipschitz  condition (6), the solution to

Eq. (1) could not approach its equilibrium v = O in finite time, and therefore, the

paradigm leading to random walk (12) would not be possible.

f:inally,  we have to discuss the infinitesimal disturbances mentioned in

connection with the instability of the solutions (5) at v = O. Actually the original

equation should be written in the form:

b = vd’3 sinol + c(f), & -+ O (18)

where c(r) represents a time series sampled from an underlying stochastic

process representing infinitesimal disturbances. It should be emphasized that

this process is not driving the solution of Eq. (18): it only triggers the

mechanism of instability which controls the energy supply via the harmonic

oscillations sinm. As follows from Eq. (18), the function e(?) can be ignored

10



when ; = O or when ~ #O, but the equation is stable, i.e. V= ml+ 2z6.),  . . ..etc.

However, it becomes significant during the instants of instability when ; = O at

r = O, z/2@ etc. Indeed, at these instants, the solution to Eq. (1) has a choice to

be positive or negative if e = O, (see Eq. (5)). However, with c #O,

signx=signc  at (=0, ?r/2co,...  etc (19)

i.e., the sign of e at the critical instances of time (19) uniquely defines the

evolution of the dynamical system (18). Thus, the dynamical system (18)

transforms a stochastic process (via its sample c(t))  into a binary time series

which, in turn, generates a random-walk-paradigm (18). Actually the solution to

[’q (18) represents a statistical signature of the stochastic process c .-.

Within the framework of dynamical formalism, the time series e(t) can be

generated by a fully deterministic (but chaotic) dynamical system. The simplest

of such system is the logistic map which plays a central role in population

dynamics, chemical kinetics and many other fields. In its chaotic domain

y.+, = 4YJ  - Y“)> y,= 0.2 (20)

the power spectrum for the solution is indistinguishable from a white noise.

t-iowever,  for the better match with Eq. (1 8), we will start with a continuous

version of (20) represented by the following time-delay equation.

y(r + z) = 4y(r)[l  -- y(t)], T = ; (21)

.
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.

y(f”) = 0.2, -:; (t* (& (22)

The solution to Eq. (21) at t=O, z/2@,... etc, coincides with the solution

to Eq. (20), but due to the specially selected initial condition (22), the solution to

Eq. (20) changes its values at z = –~ –~,.,,.  etc, so that at the points
40.)’ 4@

t=o, z/2co,... , the sign of this solution is well-defined,

Now assume that

E(f) = Eo(y(f) – 0,51), &~ (( 1.

The subtraction from y(t) its mean value provides the condition

p=l–p=;

(23)

(24)

Indeed, for the first hundred points in (23),

–++–+++––+––+––––––++++––+

––++-+–+––++––––+–+–––++–+
Sign & = (25)

+ – + + – + + + – – + + + + + + – + + + + + + – – +

+ ––––++ –––+–+––-+–––

has equal number of positive and negative values which are practically not

correlated. Therefore, the statistical signature of the chaotic time series (23) is

expressed by the solution to Eqs (12), (13) at p = ~ with the initial conditions

f(O,O)=  1, f(x,O)= O if x # O (26)

which is a symmetric unrestricted random walk:
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f(x,t) = c:2-n; 1
( )

2c!nm = —(n + x); n = integer —
2 z

(27)

Here the binomial coefficient should be interpreted asO wheneverm is not an

integer in the interval [O, n], and n is the total number of steps.

The connection between the solution (26) and the solutions to the system

(18), (21 ), (2) should be understood as follows. Suppose we solve the system

(1 8), (21), (2) subject to the initial condition (22) with v= O and

X=oart=o.

Since Eq. (21) is supersensitive to inevitable errors in (22), the solution

will form an ensemble of chaotic time series, and for any fixed instant of time this

ensemble will have the corresponding probability distribution which coincides

with (26). In other words, the probabilities described by Eq. (12), are simulated

by the dynamical system (18), (21) and (2) without an explicit source of

stochasticity  (while the “hidden” source of stochasticity  is in finite precision of

the initial condition (22)).

Combining several dynamical systems of the type (18), (21), (2) and

applying an appropriate change of variables, one can simulate a probabilistic

Turing machine which transfers one state to another with a prescribed

transitional probabilities. Non-Markovian properties of such a machine can be

incorporated by introducing time-delay terms in Eq. (2).

;= v(f) + alv(t–  to) + a21@-2To) +.... (28)
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However, there is a more interesting way to enhance the dynamical

complexity of the system (18), 21), (2). Indeed, let us turn to Eq. (23) and

introduce a feedback from Eq. (2) to Eq. (18) as following:

E=so(y–x),  co ((  I,j=y–o.  sl (29)

Then the number of negative (positive) signs in the string (25) will prevail

if x ) O (X ( O) since the effective zero-crossing line moves down (up) away from

the middle. Thus, when (X = O) at t = O, the system starts with an unrestricted

random walk as described above, and 1x1 grows. However, this growth

changes signs in Eq. (23) such that ; ( O if x ) O, and ~ ) O if x ( O. As a result

of that

x ~ YIW,max ‘ r e i n  2 Ymin (30)

where ym= and ymti are the largest and the smallest values in the time series

y (t), respectively. Hence, the dynamical system (18), (23), (2) simulates a

restricted random walk with the boundaries (30) implemented by the dynamical

feedback (29), while the probability

{
p(signe)o)  = 0 !f x 2 ‘m’x-

llfx < ymti
(31)

F:or the sake of qualitative discussion, assume that p change linearly between

x = Ymh and x = yma,, i.e.,

{

o if x ‘Ymax

P Y:::;x= if ymh S x S ym,X
mm

1 if x < ymk

(32)
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(the actual function p(x) depends upon statistical properties of the underlying

chaotic time series y(t). In particular, for the logistic map (20), small deviations

from (32) take place only around the ends (i.e., when x= ymx or X= ymti).

Then the simulated restricted random walk as a solution to Eqs.  (12) and

(32.)

Let us modify the feedback (29) as

E = &o[y-  (x2 -x)]

Now when x=O at t=O, the system is unstable since

sgnx = sgn 1, .-(x(;,

(33)

( 3 4 )

and the process is divided into two branches. The negative branch (with the

probability 1/2) represent an unrestricted random walk (x+ 00), while the

positive branch (with the same probability H ) is eventually trapped within the

basin of the attractor x = 1 since

● ✛ (x(@sgnx = -sgnx, – (35)

simulating a restricted random walk as those described above with the only

ciifference that its center is shifted from x = O to x = 1.
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As a next step in complexity, introduce the information H associated with

the random walk process described by Eqs. (12), (13):

.

H=–@og2~dx (36)
-M

and modify the feedback (29) as following:

& = is. [y-x(l +H)] (37)

Following the same line of argumentation as those performed for the

feedback (29), one concludes that the feedback (38) becomes active only if the

process is out of the domain of the maximum information, and therefore, it is

always attracted to this domain.

Since Eq. (31) is still valid, we will apply the approximation similar to

(32):

oifx(l+H)2ym,1

ymax –x(] + H)— (38)

[
Ynux  –  Ymin

1 ifx(l+H)syAn

in order to continue our qualitative analysis. It should be noticed that now p

ciepends  not only on x, but also on f, and that makes Eq. (12) nonlinear. In

addition to that, the system (18), (2) and (37), which is simulating probabilities,

is coupled with the system (12), (13) and (38) describing the evolution of

calculated probabilities. Actually due to this coupling, the entire dynamical
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system attains such a self-organizing property as to maximize the information

generated by the random walk,

The self-organizing properties of the system (18), (2), (37), (12), (13) and

(38) mentioned above have a very interesting computational interpretation:

they provide a mutual influence between different branches of probabilistic

scenarios. Such an influence or interference, is exploited in hypothetical

quantum computer (P. Shor, 1996) as a more powerful tool in a complexity

theoretic sense, than classical probabilistic computations. However, in

quantum computer, the interference is restricted to a linear unitary matrix

transformation of probabilities (which is the only one allowed by quantum

mechanics laws), while in the classical system (1 8), (2), (37) there is no such

restriction; by choosing an appropriate probabilistic term in the feedback (37),

we can provide an optimal interference. The price paid for such a property is the

necessity to exploit the calculated probabilities (1 2), (13) and (38), and the

consequences of that will be discussed in the last section.

‘3
. .

\. ar Waves ~f Pr~

Let us return to the simplest case of a restricted random walk described

by Eqs. (18), (29) and (2), and

following from (12) and (32)

analyze the corresponding probability equation

j-(x,t+ 7)= ‘“’’x-x f(x-h,f)+’ ‘-ymin f(x+-h,r)
Ym,, –  Ymh Ym.x –  Yrnin

ytin ~ x, < ymz

17
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(41 )

Hence, if

f(Ymx + ~!~)  = o (42)

then

f(ym, f + 7) = o (43)

“~his means that with the initial conditions (26),

(44)

For the same reason:

(45)

Thus, if the solution starts within the interval (40), it is trapped there.

Let us assume now that instead of (26). the initial conditions are:

f(X.,o) =  l, f(x,o)  =  0  Yx+o)  ‘. ‘Yin..

18
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Then Eq (39) reduces to

.

f(x,? + t)  = f(x + h, f), x> Yin,, (47)

The solution to this equation can be written in the form of a traveling wave of the

delta-function:

(48)

moving toward the interval (40).

When x approaches ymx, Eq. (47) must be replaced by Eq. (39), and the

solution is trapped again within the interval (40).

The same effect occurs if the solution starts with X. < y~ti.

Thus, the interval (40) represents a stochastic attractor (or a closed set of

states) i.e. a stochastic process to which all

converge irrespective of

~>xs ym,x

their initial conditions.

a n d  ytin >X >-00

19

the solutions of Eqs.  (12), (32)

Obviously that the intervals:

(49)

represent the basin of this attractor.



The feedback (29) can be modified as:

&=&o(y– ax), a>O (50)

without any qualitative changes in the results described above if the interval

(40) is replaced by

However, there are significant qualitative changes if a <O: the interval (51)

becomes a stochastic repeller, i.e., any solution originated within this interval

will eventually escape it.

In case of a nonlinear feedback (instead of (50)):

[ 1E= co y–  (p(x)

the conditions

‘9>0 or—dv<o
z al

within the interval

x’<~<x” 9 where q(x’  ) = Ym,x,  q(x”) = Ytin

(52)

(53)

(54)

20



.

lead to stochastic attractor, or repeller, respectively. Several stochastic

attractors and repellers within the interval (54) are possible if the sign of the

derivative dq / 6!x is changing.

Let us turn now to non-Markov stochastic processes when the probability

c)f transition to another state depends not only upon the present, but also upon

the past states. This properly can be easily simulated by modifying the

feedback (52) as follows:

{
8=&O ~–q[x(f), x(r–  z), x( f–2t), . . . . ..efc] 1 (55)

In order to apply Eq. (12), the approximation (32) should be replaced by:

P =

and substituted in (12)

(56)

Now Eq, (12) represents a more correlated (non-Markov)  stochastic

process, while by appropriate selection of the function ~ in (55), a prescribed

probability distributions as well as correlation’s functions can be incorporated

into the simulated stochastic process.

For illustration of dynamical simulation of a non-Markov stochastic

process assume that

7=1, Q= Z(2)+ Z(?–l)–;  , 1(0)=+,  ymx =1
xymh, F=— (57)

IYmax

21



The last assumption is natural for the mean-zero chaotic process ~ (see

Eq. (29)).

Then

{

Oifi(f)+;(t -1)= ;
p.

lifi(f)+;(l-l)=-;

i.e.

(58) & (59)

(60) & (61)

‘Thus, the non-Markov process characterized by the feedback (55), (57) has a

stochastic attractor with a variable length:

0s 1=4–+COS7U–  (++; COS7U)=1–  COSZM2,

At the instants

t=0,27r, . . ..efc

the attractor disappears, and the process becomes fully deterministic.

One can verify that if q in (57) is changed to the following:

q=qt)+x(t-1)++

22
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.

.

then the domain (62) represents a stochastic repeller

An important step toward a higher complexity of simulated stochastic

processes is dependence of the feedback (55) upon the probability functional

(see, for instance, Eq. (37)). There are two fundamentally new effects here.

Firstly, the equation (12) becomes nonlinear, and secondly, the dynamical

simulations become explicitly dependent upon the probabilities.

In order to illustrate this, consider the following feedback instead of (50):

where the variance

.
O*(2)  = j-df(x)dx

-M

(65)

( 6 6 )

is a function of t and a functional of j(x). Following the same line of

argumentation as those applied for the derivation of Eqs.  (40) and (51 ), one

c]btains  that

(67)

In other words, the fee”dback (65) provides such a stochastic attractor whose

variance is limited by the condition (67). However, the lengths of this attractor

can be found only from the solution to Eq. (12) with p expressed as:
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.

oifcT22ay:a,, X>o
1 if02 2 ay~,X, X<o (68)

[n the same way one can implement other limitations imposed upon probability

densities of the simulated stochastic process.

In order to clarify the aspect of interference of probabilities provided by

dependence of dynamical simulations upon probability densities, let us turn to

Fqs (2),(18) and (65). The solution to this system is random; however, each- .

probabilistic scenario is controlled by the feedback (65) which includes the

probability density, This probability density is governed by Eqs,  (12) and (68)

coupled with Eqs.  (2), (18) and (65). Hence, the mechanism of interference of

probabilities here is different from those in quantum mechanics: it is “artificially”

organized via a special architecture of the dynamical system.

4. Simulation of Conditional  Probg@ ilities.

In the previous sections we dealt with only one state variable x (while v

and y played the role of auxiliary variables). Now we will consider multi-

dimensional system. Such systems could be simply obtained by starting with n

identical systems of the type (18) and (2):

2 4

V l)! sin (0?+ Ei(Xj)j  ~ibi= i8 = vi ,i= 1,2, . . . ..etc.
(69)



and then changing variables

‘i =  Pi(vl’”””vn); (70)

However, as will be shown below,

which are more complex than those

there are such multi-dimensional systems

represented by Eq. (69),(70), and therefore,

they should be discussed separately. In order to demonstrate this, consider the

following two dimensional system:

( - )
VI= vv~ sin ax + &O y– X2 Xl = vl

i+ = ()vv~sinw +&O j–xl , xz = Vz,

(71)

(72)

with respect to variables xl and Xz

Eqs. (71) and (72) are coupled via the feedbacks, but their associated

probability equations are not coupled:

A(%w+d =  Pl(x2)fl% –kw)+[l  –  Pl(%)]fl(xl +  h,w)

f-2(% >x2J+ ~)= P2(%)f2(%x2 -@+[l -P2(X1)].I-2(%J2 +W

where

[( )

oif;2>l

P] = * 1–;2 if ;2 <1, P2

lifi2<l 1 if;l<l

(73)

(74)

(75)



IY
xl - X 2rn.xl=lYmi.[, ‘1 ‘— X2 =—–

IY 1’- mat IYmax

(76)

It should be noted that x, and xl enter as parameters into Eqs.  (73), and (74)
respectively. That is why ~,(x11x2)and~z(Xzlxl) represent conditional

probabi l i ty  densi t ies:  ~, describes the density of xl given Xz and f2
describes the density of X2 given xl.

The solution to Eqs.  (73) and (74) subject to the initial conditions (26),

and the condition (13) are:

Fach of them represents a non-symmetric restricted random walk.. .

(78)

26

Now the following question can be asked: how to find an underlying joint

probability density CD(X,X2)  ? It turns out that this is a hard question even from a

conceptual viewpoint. Indeed, the relationships between f,(x,lxz),  fz(XZIXI)

and O(xl,xz  ) are the following:



@(x, ,X2  ) = f ] ( 4 1 ~ 2 )j4izJ21iz =f2(x21x1)j@(x,,  z)dz
-M -04

whence

~1(x,lx2)’ _F’(w)~z
‘2(X21X1)= j!%+z

-bn

i.e.

,/’)/ f’(x’lx’) = /n Jo(x,,z)dz -/n J@(zjx2)dz
J2(+ ) -bn -an

and therefore

(79)

Thus the existence of the joint probability density 0(x,, x2) requires that the

conditional probability densities must satisfy the compatibility equation (79). But

it is easily verifiable that the solutions (77) and (78) do not satisfy this equation,

i.e., they are incompatible:

(80)



At the same time, there is nothing wrong with these solutions since they

describe two stochastic processes which can be implemented by dynamical

simulations. Hence, the only conclusion which can be made is that the joint

probability in this particular case does not exist! But how “particular” is this

case? Based upon the degree of arbitrariness to which the feedbacks in the

system (71 )(72) can be set up, it is obvious that the incompatibility of the

conditional probabilities is a rule rather than an exception. In other words, there

is a class of coupled stochastic processes for which joint probability does not

exist, and therefore, they are inseparable, i.e., there is no such transformation of

variables which would break them down into independent components. Similar

conclusion (but in a different context) was made by G. Casello (1992).

Let us modify the feedbacks in Eqs. (71) and (72) as follows:

[
&l ‘– )]= & Y (a11x1+a12x2  ,  c, =

[ - )]EO A Y– (CZ21X1  + anxz ,

A = Const> O, allaz – alzazl + O
(81 )

Then the probability equations (73) and (74) are replaced by

.f@,,%r+  ~)+P&XZ)~I(XI  -h,xz,t  + I) [ -P(x,>x2)]~,(x,  + h>xz,z)  ( 8 2 )

f2(%x2J+ t) =  P2(%%)L(%X2 – h,r)+[l –p(xl,x2)]~2(x1,x+ h,t) (83)
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~
where

p, +

P2 =

oifq~x1+a,2i2>l

4[ (l– q~ xl+ a12  X2

- )1 if all XI+ a12x2 SI (84)

(85)

Following the same line of argumentation as those applied for one-dimensional

case (see Eqs. (39)-(45)), let us find conditions for existence of coupled

stochastic attractors.

1, = zl’J,~2 = y;

where z: and x; are solutions to the system:

alJIO + a12Zf = 1, a21X10 + an%f = A

the conditions similar to (41) will be satisfied:

f’, (~:>%+ ~) = f,(x: + h,x:,t)

f,(zw’?f + t) = f,(xb; -w)

(86)

(87)

(88)

(89)
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and therefore, if

(90)

(91)

“This means that with the initial conditions (26) (applied for both of Eqs.  (82) and

(83)),

For the same reason:

(92)

(93)

where i; and i~ are solutions to the system:

ally” +- a12Y2@ = –1, C@lm + a22Y; = –a (94)

Hence, as in the one-dimensional case (see Eqs. (49) and (45), the system may

be trapped within the region:

if the inequalities following from (95)

30
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(96)

also follow from the solutions to the systems (87) and (94), and that imposes

certain constraints upon the coefficients czll,a1z,a21,azz  and A.

Indeed, these solutions are:

a,, - Aal, alla - azlx: = x; =
%la22  –  %2a21 ‘ a11a22 – a12a21

and therefore, the inequality (96) is satisfied if

a22 –Aa,2 > ~ allA – azl >0
allan –  a12a21 ‘ all a22 – a12a21

(97)

(98)

Thus, the inequalities (98) guarantee that if the initial conditions for the

system (82), (83) are within the region (95), then the solutions will be trapped

there. But if the initial conditions are outside of this region, then following the

same line of argumentation as those for one-dimensional case, (see Eqs.  (46)-

(48)), one concludes that eventually the solutions will approach the region (95)

and will remain there.

Hence, the inequalities (98) represent the necessary and sufficient

conditions that the region (95) is a two-dimensional stochastic attractor.
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It should be noticed that in contradistinction to the stochastic attractors

introduced by Zak, (1996), this one is inseparable, i.e., it cannot be broken

down into two independent one-dimentional stochastic attractors by any change

of variables.

It can easily be verified that opposite signs in (98) convert the region (95)

into stochastic repeller, while different signs

(222 – A(Z,2 alla – azl>0, < o (99)
allaz – a12az1 al ~a2z – alzazl

lead to attraction in xldirection,  and repulsion in Xz direction, i.e., to a mixed

type of a limit set.

If

azz = Aa,z, azl = Aall (loo)

then the region (95) degenerates into a point, while if the only one equality in

(100) holds, then this region degenerates into a line x,= Const, or x, = Const,

respectively.

A general form of multi-dimensional simulated conditional probabilities

can be derived from Eqs. (71)-(75):
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.

.

I – ‘i V Y.u. s Pi s J’maxPi= ‘m”
Ym,x –  Ymin

1 if pi ~ ymin

(103)

and qi(fl,...fn)  are functional of the probabilities fl,... fn Non-Markovian

effects can be incorporated in this system by including time-delays variables

Xi(t – ~) as additional arguments for the functions qi .

It should be emphasized that as in the two-dimensional case, all the

stochastic processes here, in general, are inseparable,

5. ~imu i~~ilistic  Turin~achln~

All the simulated stochastic processes discussed above had the

following limitation: they could perform a random jump only to the adjacent

neighboring states, thereby representing a simple random walk. However, for

the purpose of universal computations, such a performance is not sufficient:

random jumps from an arbitrary state to any other state with prescribed

probability is required. In this section we will demonstrate how to modify the

models introduced above to attain such a property.

Let us turn to Eqs. (21) and (22) and assume that

z z z z
‘= G)4’ G)% ,... et,., ‘—n<t*<—

4U 4U n

33

(104)



.

Now the solution to Eq. (20) changes its values at

t=&l, -Z %?~”””etc4U 4U
(105)

This means that the solution to Eqs. (18), and (2) cannot have random jumps

between the intervals (105), i.e., the length of a step in the random walk will be

hm = nh (106)

where h is expressed by Eq. (9).

Suppose that n is a random variable which is simulated by the dynamics:

v. = v,vj  SincOf + cO[j – q(n,x)], h = v. (107)

where q is an arbitrary function of n and x.

Then, analogously to Eq. (9):

n~  – ni = 64(30.)) -5p V~ = /

where / is the unit step of change of the variable n,

This step can be set

./=1
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by an appropriate choice of Vfi

(3@f3
v*=—

16
(110)

Hence,

fz=*l*l*l*e[c. (111)

while the positive and negative signs in Eq. (1 11) alternate randomly with the

probabilities P. and (1 – p.), respectively, where

o if q(n,x) > ymax

(112)

The probability density ~fi(n,x,  t) is governed by the following difference

equation:

fn(n,x,f +q=pmfn( n-l,x,r) +(l-pn)fm(n+l,x,t) (113)

gf.(n,x,?)=l (114)
R=l
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Thus, now in all of the equations considered above (see Eqs. (12), (39),

(73), (74),(82),(83), the unit step of change in x, or xi is expressed by eq. (106)

where n is a random variable with the probability distribution fn(n,x,t)

governed by Eqs.  (1 13) and (1 14). Therefore, all the equations listed above

should be modified, and we will illustrate this modification based upon Eq. (39)

which now reads:

f(x,? + 7) = ~ f~[pf(x - nh,l)+ (1 - p)f(x + A,l)] (115)
11=1

Jf(x,*px =0 (116)
.- ~

where p and f. are expressed by Eqs. (32) and (1 13),(1 14), respectively.

The corresponding dynamical system which simulates the probability

equations (1 15) and (1 16) is:

l)= vv1~3Sin@ + cO(j – x), x = v

j=y(l)–o. sl,

Y(~ + ~) = 4Y(t)[l - Y(t)],  Z= --&n

(117)

(118)

(119)

(120)

y(l”) = 0.2, ~ n
<t’<—

4U 40
(121)
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Thus, the variable x simulated by Eqs.  (1 17) performs a restricted non-

symmetric, generalized random walk: after each time period T=27c/@ it

changes its value on h,= *nh. But n, in turn, is also a random variable

simulated by Eqs. (1 18), and its probability density follows from Eqs.  (1 15) and

(1 16). Hence, at each step, the variable x has a probability p or (l-p) to

move right or left, respectively, and in a selected direction it has a probability p.

to move from any fixed point x =X..

Indeed, let us select a point x = XO. This will uniquely define the

probability p(xo) (see Eq, (32)) that the next step will be directed to the right.

Utilizing Eqs.  (1 13) and (1 14), one can find the probability ~n(xo,no) that the

length of the jump will be

ha = nOh (122)

Hence, the following transition probability matrix can be introduced:

P =

PIIP12...PIN

P21P22...P2N
\———— ——— I

PNIPN2...PNN )
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where

Pij =  
PfR(xi,nj ) (124)



is the probability that the system being in the state xi would move to the right

making the step of the length

h.= njh (125)

Conversely,

[1P;l “ “ “ dN
———— —

P; = ———— —
p;,. . .–p;N

(126)

where

P;= (1 - P).fa(xi,nj) (127)

is the probability that the system being in the state(  ) xi would move to the left

making the step of the length (125).

Obviously, if the initial probability distribution over the states Xl,X2,,..X~  is a:):

● (2) ●

a~) = a~l)pj~, ak = af)  pjk

‘2) and ;;) are the probability distributionwhere a k

and to the left of the original states respectively.

(128)

over the states to the right



The basic property of the relationships (128) is that the probability a~

assigned to the state x~ depends only upon transition probabilities pjk to the

same state from all other states, and it does not depend upon the transition

probabilities pjl(l # k) to different states. Physically it means that if a certain

branch of the probabilistic scenario is already chosen in the course of

dynamical simulations, then all other branches become irrelevant: they will

never effect the evolution of the dynamical system, In other words, there is no

interference between classical probabilities, and therefore, one dynamical

‘device” can Drocess  onlv one Probabilistic branch.
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simulations of classical and quantum probabilities; in particular, there is no way

in which quantum probabilities can be dynamically imitated by a classical

device.

Thirdly, in classical case the probability that a particular configuration is

reached at a certain step k in the computation is the sum of the probabilities of

all the nodes corresponding to that configuration at the level k in the

computational tree.

In contradistinction to that, in QTM, the probability of the same

configuration is the square of the sum of the amplitudes of all leaf nodes

corresponding to that configuration. As a result of that, the probabilities interfere

in such a way that two different probabilistic branches can amplify or cancel

each other (the last case occurs if some of the probability amplitudes are

negative). This means that in quantum computations one cannot follow a

selected probabilistic branch as in the classical case: a QTM processes

simultaneously all the probabilistic scenarios in the form of a special type of

their superposition, and that particular property had been proven to be the most

important in reducing the exponential complexity of computations to the

polynomial one for some hard problems like factorization of large numbers, (P.

Shot, 1996).

However, there is another effect of probability interference which can be

associated with so called emergent computations, (S. Forrest, 1990). Emergent

computations is an alternative to parallel computing which exploits the

interactions among simultaneous computations to improve efficiency, increase

flexibility, or provide a more natural representation. The basic idea behind the
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emerging computations is that if a physical phenomenon is described in terms

of its information processing properties, then the information which is absent at

lower levels can exist at the level of collective activities. That is why the

emerging computations can lead to effects of self -organizaton, cooperation

between primitive components without global control.

It is interesting to notice that the property to perform emerging

computations has not been well pronounced in theory of QTM, probably

because of limitations imposed upon interactions between different branches of

computations by unitary transformations required by quantum mechanics. As

will be shown below, the emerging computations can be simulated within the

framework of the Turing machine introduced above (see Eqs.  (1 17)-(121), in a

more flexible way; the only price paid for that will be the necessity to exploit a

‘calculated” probilities. In order to demonstrate that, let us turn to Eq. (1 17) and

modify it as follows:

v = vd’3SinaM + EO[y– ~(x, H,a,...)],  x = v

where H and o are given by expressions (36), and (66), respectively.

Then, Eq. (32) should be replaced by

(129)

(130)
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and therefore, the components of the transition probability matrix (124) will

depend upon H,a, and other functional of the probability distribution ~(x,f).

This means that nc)w the evolution of a certain probabilistic branch simulated by

Eqs. (1 17) - 121) will depend upon evolution of other branches via the

functional H,a,...etc.,  andtherefore,  itwillbe coupled with theequations(ll  3)-

(116) which govern theprobabilities ~n(n,x,t)  and~(x,f).

Thus, the system (1 13)-(1 16), (1 18)-(121) and (129) represents a

classical Turing machine performing emerging computations, while the way in

which different branches of computations interfere can be set up by an

appropriate choice of functional in Eq. (29). However, it should be recognized

that there is a difference between the role of Eqs. (1 13) - (1 16) in the case of Eq.

(1 17), i.e., without interference, and in the case of Eq. (129), i.e., with the

interference of probabilities. In the first case, the dynamical equations (1 17) -

(121 ) simulate the probabilities f and f. and therefore they simulate Eqs. (1 13)

- (1 16). In the last case, Eqs.  (1 18)-(129), (129) and Eqs.  (1 13) - (1 16) are

coupled, i.e., the probabilities cannot be simulated without equations describing

“calculated” probabilities.

6 .  -ion o f  J@ll@nt  S@ms

When dynamical systems describe natural phenomena, their basic

properties are defined by energy and its time evolution. However, for those

dynamical systems which model intellectual activities such as optimal behavior,

decision making process, games, the more useful characteristic of the

performance is information rather than energy.
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Let us consider, for instance, a dynamical system (1 17) - (121). The

evolution of the information stored in it is defined as:

H(t)= -jkr)log,f(x,r)dx (131)
-00

while j(x, t) is governed by Eqs. (1 15),(1 16), which are uniquely determined by

the parameters of the system (117) - (121).

However, the fundamental difference between the systems modelling

natural phenomena, i.e., physical systems, and man-made, or intelligent

systems is not only in the way in which they are described, (as a matter of fact,

physical systems can also be described in terms of information, H. Haken,

1988), the basic property of intelligent systems is that their structure, and

therefore, the structure of the information (131), is not given in advance: it is

supposed to be created based upon the purpose to which the system serves.

For illustration, consider the system (101 ) and present the functions qi in

a parametrized form adopting a neural net formalism, (M. Zak, 1994):

tii = Vq!%ax+eo(y-qi),  iiv,, i=l, z.., n

Pi= ‘anh ~Tijxj
j=l

(132)

(133)

where TV do not depend upon Xi (but they may depend upon the functional of
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~(x);  the hyperbolic tangent tanh represents nonlinearities in ~i(xi,xn).  Thus,

the dynamical system (1 12) in terms of its probability evolution (102) is uniquely

defined by the choice of the constants Tti, and therefore, the problem of the

synthesis of an intelligent system can be reduced to finding these constants

based upon the objective of the system performance.

Let us assume that the purpose of the system performance is to minimize

some functional of the probability distributions fi,... fm:

where f, depends upon TV via Eqs. (102),(103) and (133)

Then Tti are found from the system:

*—=0; i,j=l,2,... n
&g

(134)

(135)

However, despite the conceptual simplicity of this approach, its practical

significance is limited since in real life situations the global objective in the form

(134) is not available. Instead, each dynamical unit, i.e., each variable xi , has

its own local objective which can be partly compatible, and partly contradictory

to local objectives of other units. Surprisingly, very often such systems exhibit

very interesting properties associated with the concept of collective brain.

44

The concept of the collective brain has appeared recently as a subject of

intensive scientific discussions from theological, biological, ecological, social,



,

.

and mathematical viewpoint. It can be introduced as a set of simple units of

intelligence which can communicate by exchange of information without explicit

global control. Th[] objective of each unit may be partly compatible and partly

contradictory, i.e., the units can cooperate or compete. The exchanging

information may be at times inconsistent, often imperfect, non-deterministic, and

delayed. Nevertheless, observations of working insect colonies, social systems,

and scientific communities suggest that such collectives of single units appear

to be very successful in achieving global objectives, as well as in learning,

memorizing, generalizing and predicting, due to their flexibility, adaptability to

environmental changes, and creativity.

Let us assume that each member (or a dynamical unit) characterized by

(136)

the variable xi , has its own version of the global objective of the whole

dynamical system which can be expressed in the form similar to (134):

@i(fi,.,.fA)+min

while, in general,

@i#@jifi#j

Each unit can learn (in its own way) the global objective of the system during

previous collective tasks. Based upon that, it may “derive” its own version of the

system (135):

a9
.@f) “ Q k=l,2,... n (137)
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and therefore, its own version of the whole dynamical system in the form smilar

to Eqs.  (1 32):

V(k) =
1

v(q!k))V3Sinax + EO(j– q}k)), i}k) = IJk), i = 1,2,... n

k=l,2,...  n

(138)

Here v~),x~)  are the actual values of the variables, while v~~),xfk)(k # i) are the

values of the same variables predicted by the @h dynamical unit,

Hence, as a result of the collective brain paradigm, the oiriginal

dynamical system (132) of 2n equations with respect to 2n variables Xi and vi is

replaced by the system (138) of 2n2 equations with respect to 2n2 variables
(k)X$k) and vi , i,k=l,2... n.

Since the last system has the same dynamical structure as the original

dynamical system (132), its solution can be described by n2 equations similar to

( 1  2 7 ) :

fjqxp).  . . (
(k )  ( k )  X[k)

‘ k )  -~x:))+(’-~f))ff’)(xfk)$.xJk)+~..x:)+x~)~)’)xy, t+~)=pi fi .  . . x .

(139)

where
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(140)

and

As follows from Eqs.  (139)-(141), the dynamics with the collective brain is

less predictable than the original dynamics. However, in contradistinction to the

original dynamics which requires a global control for its performance, the last

version of dynamics is more flexible: it can perform relatively well based upon

the autonomy of the dyamical  units which can predict the events if the actual

values of the variables are not available.

The autonomy of the dynamics with collective brain can be increased if

each unit can have not only its own version of the global objective of the system,

but also its versions of the global objectives of others dynamical units. Clearly

such an ability will require deeper correlations between the dynamical units

which can be achieved by more intensive learning during the previous

collective tasks. From the analytical viewpoint, the complexity of this dynamic

system will be significantly higher: the system having the same stucture as Eqs.

(138) and (139), will contain 2n3 equations with respect to 2n3 variables. In the

same way one can introduce more autonomous (but more complex) dynamical

systems with collective brain of higher dimensionalities.
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The intelligent systems of the type (138), (139) or of its more complex

versions discussed above, can be linked to game theory. Indeed, here each ith

player (represented by the corresponding variable xi), tries to achieve its local

objective by taking into account the knowledge about possible local objectives

of other players. However, in contradistinction to the classical game theory

which is based upon ‘calculated” probabilities, the intelligent dynamical

systems discussed above are based upon simulated probabilities: they are

capable of learning probabilistic strategies, and the knowledge is acquired and

stored in the deterministic coefficients Tij.

7.

In the previous sections we have analyzed an impact of ideas introduced

in connection with a hypothetical quantum computer upon concepts of classical

computing. Our attention was focused on simulation of classical probabilities

and imitation of a quantum effect of probability interferences. Actually, the last

effect has ignited the scientific community by its potential for powerful non-

quantum applications to computational problems of exponential complexity.

This kind of problem became an obstacle to progress in many classical areas

such as operation research, artificial intelligence, combinatorial optimization,

etc. Because of non-quantum nature of these applications, classical

simulations which could imitate the probability interference can be considered as

an attractive alternative to a hypothetical quantum device. Such simulations

were introduced in the form of the dynamical system (1 12) - (121), and they can

be associated with quantum intelligence.

48



.

t

Let us take a close look at this system. Actually it simulates the evolution

of a classical probabilistic Turing machine. If this machine has N possible#

states, and it starts from an initial roof of the Nth Ievelled  “decision” tree, there

are 2N possible probabilistic scenarios to approach the Nth level. By specifying

a set of scenarios consequent to each possible “action,” a ‘decision” free

facilitates evaluation of this action. Therefore, in order to evaluate all actions

and select the best (based upon a prescribed objective), one has to perform an

exhaustive search and run 2N scenarios, while this number grows exponentially

with the linear growth of the dimensionality  N.

Let us assume now that there is an interference of these probabilistic

scenarios. In our case such an interference is achieved by incorporating

probability functional (such as E(~), o(f), H(~)  etc) in to the dynamical

equation (1 18). Then only a simple run of Eqs. (1 17)-(121) will include

simultaneously all the contributions from other probabilistic branches via the

probability functional, and due to these contributions the actual trajectory may

jump from one branch to another. By selecting an appropriate structure of the

feedback in Eq. (1 18), this trajectory can be optimized subject to a prescribed

objective of the system performance.

The strategy for the trajectory optimization can be drawn out of the

methodology proposed in the previous section. Indeed, consider the system

(1 12)-(121) and Eq. (32), and assume that the objective function is expressed in

the form of the maximum of the information H:

If-+ max, H=–f. f(xi)10g2.f(xi)
i=]

(142)
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subject to the constraints:

~f(Xi)= 1,  fxif(xi)= ‘(c)
,=1 i=]

(143)

where the expectation E is a prescribed function of time.

Then the optimal probability distribution fO(Xi,t)  is found from the

condition:

[ 1d H+ A, ff(xi)+a2~xif(xi)  =027 j=l i=]

(1 44)

whence

~O(xi?)  =  el’+a’’’-’, A,=a,(f),  a, = a,(t) (145)

Here 21 and A., are the Lagrange multipliers found from teh constraints (143).

Now one has to find such a solution to Eqs.  (1 15)-(1 16) which would have a

minimal deviation (in the least square sense) from Eq. (145).

This means that for each time step r:

where

j(xi,t + 7) = ~f:[pfo(xi  - nh,+t (1 - p)fo(xi + nh,f)]
n=]
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The minimum in (146) should be sought with respect to f: subject to the

constraint (1 16). This leads to minimization of the following function:

[
‘f= ~ ~f~m(xi,n,r)  -f,a=]

where A is a Lagrange multiplier, and

‘(xj,n) = ~f~(xi – ‘h$z) + (1 – ~)f~(Xi + ~lk>f) (149)

Parametrizing q; as functions of x:

one reduces the problem to finding the constraints T~ from the system of linear

equations:

w,
— = 0 ,  k=l,20..ln; n=l,2,../Vfi~ (151)

which, together with Eqs. (1 50) define the optimal (subject to the objectives

(142),(1 43) probability distributions, and therefore, the optimal transitional

probabilities (124), for each time step t.

The Lagrange multiplier A is found from the constrain (1 16).
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The next step is to find the appropriate coefficients p: in Eq. (1 13) which

provide the optimal distributions f:(x) determined above. Applying the same

strategy as those for Eq. (1 15), one obtains:

where

]“(n,x,t+ t)=p:f:(n -l,x,?) +(l-p:)f:(n+l,x,f)

(152)

(153)

The minimum in (152) is sought with respect to p:.

Parametrizing p: as functions of x:

p; = :’r~xm (1 54)
k =1

one again reduces the problem to finding the constraints T: from the system

of linear equations:

(155)

which, together with Eq. (154), determine the optimal functions pj in Eqs.  (1 12)

and (1 13), and therefore, the optimal structure of the feedback in Eq. (1 18), for

each time step T :

(p(n,x) = ymx - P~(Yma. –  YmiII )
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Thus, starting with the objective (142) subject to the constraints (143), for each

time step ~ one can determine the optimal feedback (1 55) for Eq. (1 18).

Now a single run of Eqs,  (1 17)-(121) at each time step, will include

“thinking,” i.e., determining the structure of the feedback (156) for the reset time

step ~ via solving Eqs. (151) and (155).

It should be understood that the optimal trajectory discussed above has a

certain meaning only in the probabilistic sense. Indeed, each run of Eqs. (1 17)-

(121 ) will result in different optimal trajectory, but all of such trajectories will form

an ensemble whose probabilistic properties are optimal subject to the objective

(142), (143).

In order to evaluate the computational complexity of the optimization

performed by quantum intelligence, we recall that solutions to Eqs.  (151) and

(1 55) (which implement ‘thinking” accompanying the single run of eqs. (1 17) -

(121 )) have polynomial complexity, and therefore, the quantum intelligence

paradigm eliminated combinatorial explosion.

Obviously the same approach can be applied to more complex intelligent

systems where a global objective is replaced by a set of competing local

objectives (see Eqs. (138)-(141). In these systems, quantum intelligence is

implemented in the form of dependence of the feedbacks in Eqs. (138) on the

probability functional via the coefficients T$) (see Eqs. (133) and Eqs.  (137)).

As a result of that, the system attains some new self-organizing properties which

have not been prwcribed in advance. The mechanism of such an emerging
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phenomenon exploits contribution of the paradign of collective brain when each

dynamical unit not only has its own local objective, but also predicts local

objectives of other units.

So far, the interference of probabilities was implemented via the

dependence of the feedback in the dynamical equations upon the probability

functional E(~), ~(~),11(~),  etc., i.e. via the global influence between different

probabilistic branches.

However, the interference of probabilities can be local if the feedback

depends upon the probability f and its derivatives, but not upon their

functional. Turning, for instance, to Eqs. (101), one can modify the feedback ~i

in the following way:

( ~flfndf-,  ?f
Pi=Pi  ‘i,’”” R, ,~y...getc.etc

)

(157)

For a qualitative analysis of such a local interference of probabilities, one

should notice that as a consequence of (157), the equations (102) describing

the evolutions of the probabilities fi , becomes nonlinear, and they can be

considered as discretized  versions of nonlinear parabolo-hyperbolic  equations

since the shift operator E is expressed via the differential operator D as:
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where h and t are space and time shifts, respectively. That is why the local

ir~terference of probabilities can lead to such fundamental nonlinear effects as



shock waves, Burger’s waves, solitons,  i.e., concentrations of probabilities

which can be interpreted as special emerging effects of self-organization.

There are seveal  advantages of classical imitations of probability

interference over “natural” quantum simulations for non-quantum applications.

Firstly, the interference is not restricted to linear unitary (reversible)

transformations; moreover, it can be selected in an optimal way subject to the

required objective of the performance.

Secondly, it can be applied to a much broader class of problems, and in

particular, to the field of intelligent systems which are fundamentally irreversible.

Thirdly, the classical imitations of the probability interference are based

upon existing technology: both chaotic and non-Lipschitz  dynamics can be

implemented in circuits.

So far we discussed non-quantum computational applications. Now one

may ask how far can we go in imitating a hypothetical quantum computer by

classical devices. The border line for such imitations is drawn by the so called

hidden-varriable problem (R. Feynmann, (1982)): It is impossible to represent

the results of quantum mechanics with a classical universal device. That means

that for applications to quantum mechanics, the superiority of a quantum

computer over any classical one is unquestionable.
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8 Simulation of Schrodinger  equation.

The mathematical formalism exploited in all the previous sections was

based upon the relationships between the non-Lipschitz dynamical equations

(1), (2) simulating random walk, and the discretized version of the Fokker-

Planck equation (12) governing the evolution of the probability corresponding

to this random walk.

A continuous version of Eq. (12), i.e., the Fokker-Planck  equation, is

obtained if

V-0.) 4J3, wdc0-+m (159)

Indeed, then:

(160)

and Eq. (12) reduces to the Fokker-Planck equation:

(161)

There is a formal mathematical similarity between the Fokker-Planck  and the

Schrbdinger  equations: replacing real time t in Eq. (161) by an imaginary time
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t,, =it, i=G

one arrives at the Schrodinger  equation:

.* . #f
‘i d(,. t%’

(162)

(163)

Continuing this analogy, one may ask: does there exist a dynamical system

which simulates the Schrbdinger  equation (1 63) in the same way in which the

dynamical system (1),(2) simulates the Fokker-Planck  equation?

The formal mathematical answer to this question is very simple: yes, it

does. Indeed, turning to Eqs. (1),(2) and introducing an imaginary time

t* = it

one obtains

dx dv~ = vv!PSinW,, v - cow,
~= ‘“’ dt

@-jm

(164)

(165)

Formally this system is identical to Eqs,  (1 ),(2), and therefore, it describes a

random walk whose probability is governed by the Fokker-Planck  equation:
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or, after returning to the real time t, by the Schrodinger Equation (163).

Surprisingly, the mechanism of the instability of Eqs.  (1 65) is explained

much easier here than those in the classical case: it just follows from the

uncertainty principle which rejects a possibility that initial conditions for both the

position and the velocity of a particle are known exactly.

However, for the purpose of actual simulations of the Schrodinger

equation (163), the dynamical system does not offer much (since it evolves in

imaginary time), unless it can be given a meaningful physical interpretation. A

mathematical formalism for such an interpretation can be borrowed from special

theory of relativity in which physical events are mapped into a pseudo-

eucledian space with real space coordinates and imaginary time. But the main

problem here is not in mathematics, but rather in physics: does the dynamical

system (165) exist in real physical world?

The discovery of chaos in classical mechanics raised many questions

among quantum physicists about a possibility that there is a deterministic

microstructure behind the Schrtidinger  equation, and as a result of instability,

this microstructure loses its determinism and “collapses” into probabilistic world

in the same way in which deterministic Newtonian dynamics attains

stochasticity due to chaos. Such speculations were encouraged by views

expressed by A. Einstein who had never been comfortable with the probabilistic

origin of quantum mechanics. From this viewpoint, the dynamical system (165)

represents an alternative to this probabilistic origin: it is fully deterministic

(since it does not include any random parameters); it is driven by instability

triggered by uncertainties in initial conditions (in this context, the uncertainty
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principle in quantum mechanics plays the same role as the finite precision of

initial conditions does in classical mechanics); and finally, the evolutin  of

probability resulting from instabilities is described by the Schrodinger  equation,

At this stage, we cannot prove (or disprove) existence of a deterministic

origin of quantum mechanics. But we can make the following statement: if such

a deterministic origin exists, its phenomenological  structure is likely to be similar

to those of Eqs.  (165), and then the quantum device for a quantum computer

can be based directly upon special “quantum” simulations of Eqs.

was described in the previous sections for classical simulations.

(165) as it
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